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Abstract

AT Agents can perform complex operations at great speed, but just
like all the humans we have ever hired, their intelligence remains
fallible. Miscommunications aren’t noticed, systemic biases have
no counter-action, and inner monologues are rarely written down.

We did not come to fire them for their mistakes, but to hire them
and provide a safe productive working environment. We posit that
we can reuse a common corporate organizational structure: teams
of independent Al agents with strict role boundaries can work with
common goals, but opposing incentives. Multiple models serving
as a team of rivals can catch and minimize errors within the final
product at a small cost to the velocity of actions. In this paper
we demonstrate that we can achieve reliability without acquiring
perfect components, but through careful orchestration of imperfect
ones.

This paper describes the architecture of such a system in practice:
specialized agent teams (planners, executors, critics, experts), orga-
nized into an organization with clear goals, coordinated through
a remote code executor that keeps data transformations and tool
invocations separate from reasoning models. Rather than agents
directly calling tools and ingesting full responses, they write code
that executes remotely; only relevant summaries return to agent
context. By preventing raw data and tool outputs from contami-
nating context windows, the system maintains clean separation
between perception (brains that plan and reason) and execution
(hands that perform heavy data transformations and API calls). We
demonstrate the approach achieves over 90% internal error inter-
ception prior to user exposure while maintaining acceptable latency
tradeoffs. A survey from our traces shows that we only trade off
cost and latency to achieve correctness and incrementally expand
capabilities without impacting existing ones.

CCS Concepts

« Computing methodologies — Artificial intelligence; - The-
ory of computation — Verification and validation; « Informa-
tion systems — Data management systems.
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1 Introduction

Large language models have demonstrated remarkable capabilities
across diverse tasks, yet their deployment in production systems
remains hampered by a fundamental challenge: unreliability. When
a single LLM hallucinates, misinterprets context, or makes a log-
ical error, there is no mechanism to catch the mistake before it
propagates downstream. In high-stakes domains, such as financial
analysis, healthcare decision support, and legal document process-
ing, a single uncaught error can have severe consequences.

The standard approach to deploying LLM-based systems mir-
rors hiring a single brilliant analyst: you craft an elaborate prompt,
invoke one model, and trust the output. This works well for demon-
strations and low-stakes applications. But just as no responsible
organization would rely on a single employee to handle critical
operations, verify their own work, and catch their own mistakes,
we should not architect production Al systems around single-agent
execution, even with self-review.

1.1 From Single AI Person to Al Office

Consider the difference between a solo worker and an entire office.
A talented individual working alone has inherent limitations: sys-
tematic biases go unchecked, difficult edge cases get missed, and
when mistakes occur, there is no safety net. An office, in contrast,
achieves reliability through organizational structure: specialization
allows experts to focus on their strengths, redundancy catches er-
rors through peer review, oversight provides hierarchical validation,
and collaborative problem-solving distributes complex tasks across
appropriate specialists.

Just as no responsible hiring manager would recruit exclusively
from a single institution, we should not architect Al systems around
models from a single provider. Different model families exhibit
complementary strengths and failure modes. Relying on a single
provider creates a monoculture: cost structures become inflexible,
capabilities are bounded by that provider’s architecture, and per-
formance cannot be optimized for diverse task requirements. A
team drawing from multiple model providers achieves cognitive
diversity that no single source can provide, matching specialized
models to appropriate tasks while reducing systematic biases and
expanding the solution space for complex problems.
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Traditional single-agent LLM systems exhibit the qualities of the
solo worker: simplicity, speed and lower cost. However, as tasks
require more tools and specific training to use them, the limitations
of a jack of all trades are exposed, with too many tools to switch
between creating context switching overheads.

This paper presents an alternative architecture that creates an
Al office full of specialists rather than relying on a single generalist.

1.2 Achieving Coherence

Central to this work is the concept of coherence: the quality of
forming a unified whole. Applied to large organizations, coherence
is maintained by opposing forces holding outputs within an accept-
able zone. Each stakeholder pushes in a different direction: one for
completeness, another for practicality, a third for correctness. Their
conflicting incentives create boundaries that prevent drift. Advance-
ment requires consensus among stakeholders with veto authority,
forcing results into the intersection where all opposing forces find
the output acceptable. This is not compromise or majority voting;
it is the discipline of satisfying rivals simultaneously.

We apply this principle to multi-agent Al systems. The planner
pushes for clarity and completeness, the executor pushes for prag-
matic implementation, and the critic pushes for correctness and
standards compliance. A single-agent system lacks these opposing
forces: the same entity that craves completion also evaluates com-
pletion, with no counterbalance. Our Al office achieves coherence
when agents with conflicting roles reach consensus that the output
is acceptable.

Our multi-agent system achieves reliability through organiza-
tional principles: specialized agents occupy distinct roles (planner,
executor, critic), hierarchical veto authority prevents errors from
propagating, and pre-declared acceptance criteria establish clear
quality gates. Just as financial reports require independent audits
rather than accountant self-certification, our architecture ensures
that code writers cannot declare their own work complete; only
independent critics with veto authority can approve outputs for
advancement.

1.3 Theoretical Foundation

Our approach builds on two foundational concepts. First, Reason’s
Swiss cheese model [11] describes how multiple imperfect layers of
defense can achieve system reliability: even if each layer has holes
(failure modes), if we can ensure the holes are misaligned, hazards
cannot propagate through all layers simultaneously. We apply this
to Al systems through team-based validation, where multiple agents
with different failure modes create defense-in-depth.

Second, we treat miscommunication as the fundamental problem
instead of treating it as an avoidable error. Reliable communication
over a noisy channel can operate reliably, but at a much lower
bandwidth than the maximum possible. Shannon’s channel capac-
ity theorem [13] showed that reliable communication is achievable
even when individual transmissions are noisy, establishing a pre-
cise theoretical boundary that you cannot exceed. The theorem
introduced mutual information as the key quantity linking channel
input and output, measuring how much information successfully
transfers despite noise. We apply this insight to multi-agent sys-
tems by treating inter-agent communication as a noisy channel.
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We expand our system by encoding data moving across agents
with verbosity and retries as redundancy, achieving reliable infor-
mation flow between unreliable model components. This idea of
redundancy for safety mirrors "Shisa Kanko," the Japanese railway
practice of pointing and calling to prevent errors through deliberate
repetition. This overhead reduces throughput, which we quantify
later in the paper.

The goal is not to eliminate component unreliability, an impos-
sible task, but to achieve system reliability that exceeds what any
individual component could provide.

1.4 Architecture Overview

Our system comprises 50+ specialized agents organized into teams
with distinct roles: planners generate execution strategies, execu-
tors perform work, critics validate outputs against pre-declared
criteria, and a remote code executor maintains clean separation
between reasoning and data transformation. Critical to reliability
is hierarchical veto authority: critics can reject outputs entirely,
triggering team-internal retry without re-planning. This prevents
the accountability problems with council based voting, where a
specialized critic with domain expertise can halt propagation even
when consensus finds nothing wrong.

The remote code executor [7] keeps data transformations and
tool invocations separate from reasoning models, preventing raw
data and tool outputs from contaminating agent context windows.
Rather than agents directly calling tools (which would inject full
responses into their context), they write code that invokes tools like
MCP servers; tool responses remain in the remote execution layer,
with only relevant summaries returning to agents. Agents perceive
results through summaries and schemas rather than full datasets or
raw API responses, maintaining the separation between perception
(brains that plan and reason) and execution (hands that perform
heavy data transformations and API calls). This architecture solves
the tool complexity trap: rather than burdening a single agent with
50+ tools and an unwieldy prompt containing massive datasets and
tool outputs, each specialized agent reasons about what to do while
the remote executor handles the dirty work.

1.5 Contributions
This work makes the following contributions:

e Organizational reliability for Al systems: Demonstration
that standard organizational practices for large engineering
teams transfer effectively to multi-agent Al systems.

e Context Ray Tracing: A message visibility mechanism that
controls information flow between agents at different hier-
archical levels. Rather than broadcasting all information to
all agents, representatives attend cross-team coordination
points and relay only relevant summaries, analogous to or-
ganizational meetings where delegates discuss and decide
on behalf of their teams.

e Data Isolation: Separation of reasoning from execution
by keeping data transformations and tool invocations in a
remote layer, preventing context contamination with raw
data. The agents can request multiple summaries, samples
and outliers instead, so the working set size can be much
larger than the context window.
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e Multi User Interactivity: Integration of multiple human
stakeholders into the organizational structure, enabling ap-
provals, reviews, and escalations to be distributed across
different users rather than funneling all interactions through
a single operator.

e Post-hoc Audits: A bidirectional traversal mechanism for
the action graph that supports multiple audit workflows:
sidebar questions during execution, backward tracing from
results to debug errors, citation maintenance linking out-
puts to source evidence, and exposure analysis to identify
downstream impacts when cited facts are corrected.

The remainder of this paper is organized as follows: Section 2
surveys related work on multi-agent systems and ensemble meth-
ods; Section 3 details the system architecture; Section 4 presents
evaluation results; Section 5 discusses implications and limitations;
Section 6 concludes.

2 Related Work

Recent research on LLM-based systems has studied (i) failure modes
and reliability challenges in multi-agent LLM systems, (ii) trust,
risk, and security management for agentic settings, (iii) LLM en-
sembles and consensus-based validation for improving reliability,
(iv) multi-LLM collaboration in high-stakes domains, and (v) evalua-
tion and benchmarking for agent safety and enterprise deployment
requirements.

2.1 Multi-Agent LLM Systems

Cemri et al. [2] introduce MAST-Data, a dataset of over 1,600 an-
notated traces collected across 7 multi-agent system frameworks.
They build the MAST failure taxonomy through analysis of 150
traces guided by expert human annotators (k = 0.88), identifying 14
failure modes grouped into three categories: system design issues,
inter-agent misalignment, and task verification failures.

Huang et al. [5] investigate multi-agent collaboration in the pres-
ence of faulty agents (described as “clumsy” or malicious). They
propose AutoTransform and Autolnject to introduce mistakes into
agents’ responses, study the resilience of multiple system struc-
tures, and report that a hierarchical structure yields the lowest
performance drop (5.5%) compared to 10.5% and 23.7% for two
other structures. They also introduce resilience mechanisms named
Challenger (agents challenge others’ outputs) and Inspector (an
additional reviewing agent), reporting recovery of up to 96.4% of
errors made by faulty agents.

Raza et al. [10] adapt and extend the TRiSM (Trust, Risk, and Se-
curity Management) framework for LLM-based agentic multi-agent
systems, describing a framework structured around pillars includ-
ing Explainability, ModelOps, Security, and Privacy/Governance.
They propose a risk taxonomy spanning issues from coordination
failures to prompt-based adversarial manipulation, and introduce
two evaluation metrics: Component Synergy Score (CSS) and Tool
Utilization Efficacy (TUE).

Wang et al. [14] propose Solo Performance Prompting (SPP),
a prompting method that enables a single LLM to act as a multi-
persona self-collaborator by dynamically identifying and simulating
personas based on the task input. They report that assigning multi-
ple fine-grained personas improves problem-solving compared to
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using a single or fixed number of personas, reduces factual halluci-
nation while maintaining reasoning ability, and observe that the
“cognitive synergy” phenomenon appears in GPT-4 but not in less
capable models.

2.2 LLM Ensemble and Consensus Methods

Naik [9] proposes a framework that repurposes ensemble methods
for content validation through model consensus, motivated by reli-
ability needs in high-stakes settings. The paper reports tests across
78 complex cases requiring factual accuracy and causal consistency,
with precision improvements from 73.1% to 93.9% (two models) and
95.6% (three models), and reports inter-model agreement x > 0.76
while retaining sufficient independence to catch errors through
disagreement. The work also notes constraints including multiple-
choice requirements and processing latency.

Kamen and Kamen [6] propose an ensemble large language
model framework (eLLM) for unstructured text categorization, de-
scribing how aggregation can address issues including inconsis-
tency, hallucination, category inflation, and misclassification. They
report up to 65% Fl-score improvement over the strongest sin-
gle model, formalize aggregation criteria via a collective decision-
making model, and evaluate ten LLMs under zero-shot conditions
on a human-annotated corpus of 8,660 samples using the IAB hier-
archical taxonomy.

Chen et al. [3] provide a survey of LLM ensemble research, de-
scribing a taxonomy that classifies methods into ensemble-before-
inference, ensemble-during-inference, and ensemble-after-inference
categories. They also cover benchmarks and applications and pro-
vide a curated list of relevant work.

2.3 Multi-Model Collaboration in High-Stakes
Domains

Sanchez et al. [12] apply multi-LLM collaboration to medication
recommendation, building on prior work they describe as LLM
Chemistry (a measure of collaborative compatibility among LLMs).
They describe a two-stage collaboration mechanism and explicitly
state that they extend the evaluation step with a consensus step that
transforms diverse (sometimes conflicting) model outputs into a
unified decision. They evaluate the approach on medication recom-
mendation and report improved accuracy and stability over other
ensemble baselines.

2.4 Evaluation and Benchmarking of Agent
Safety

Zhang et al. [16] introduce Agent-SafetyBench, a benchmark with
349 interaction environments and 2,000 test cases covering 8 cate-
gories of safety risks and 10 common failure modes. They report
evaluating 16 popular LLM agents and finding that none achieves a
safety score above 60%. They also identify two safety defects: lack
of robustness and lack of risk awareness, and report that defense
prompts alone may be insufficient.

Mohammadi et al. [8] survey evaluation and benchmarking of
LLM agents and propose a two-dimensional taxonomy organizing
work by (i) evaluation objectives (including behavior, capabilities,
reliability, safety) and (ii) evaluation process (including interaction
mode, datasets/benchmarks, metric computation methods, tooling).
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They highlight enterprise-specific challenges, including role-based
access control and the need for reliability guarantees for audit
and compliance purposes, alongside long-horizon interaction and
compliance requirements.

2.5 DPositioning and Contributions

While prior work establishes the potential of multi-agent systems
and ensemble methods, our contribution lies in the integration
and operationalization of these concepts into a production-ready
architecture. Prior work is largely theoretical or evaluated at small
scale; we evaluate on 522 production sessions with quantified cost-
benefit tradeoffs (38.6% overhead). We combine:

¢ Role-based specialization with strict boundaries prevent-
ing context contamination

e Hierarchical veto authority (not consensus voting) in-
spired by organizational structures

o Pre-declared acceptance criteria (not emergent verifica-
tion) following test-driven development principles

o Message passing kernel abstraction to maintain legibility
across actions

o Swiss cheese layered validation where multiple imperfect
checkers with misaligned failure modes catch errors

Unlike probabilistic consensus approaches [9], our critics have
absolute veto authority. Unlike democratic voting schemes [6], our
architecture is hierarchical with asymmetric power. Unlike general
ensemble methods [3], our agents occupy specialized roles rather
than serving as interchangeable models.

These technical mechanisms combine to deliver the five contribu-
tions outlined in Section 1: (1) Organizational reliability emerges
from hierarchical veto authority and pre-declared acceptance crite-
ria transferring software engineering practices to Al (2) Context
Ray Tracing is enabled by message passing kernel abstraction and
role-based specialization creating selective visibility; (3) Data Isola-
tion prevents context contamination through strict role boundaries
and remote execution; (4) Multi User Interactivity leverages the
organizational structure for human approvals and escalations; (5)
Post-hoc Audits are possible because message passing provides
complete traversal of all agent interactions. This integration cre-
ates a practical framework for deploying LLM-based systems in
production environments where correctness is non-negotiable.

3 System Architecture

3.1 Multi-Agent Architectures: From Delegation
to Organizational Oversight

The term “multi-agent” obscures more than it reveals. A system
with two agents and a system with fifty agents organized into
reviewing committees are both “multi-agent,” yet they differ in a
property that matters far more than agent count: where errors get
caught. We distinguish three architectural patterns by this criterion.

3.1.1  Tool Chaining: Sequential Execution, No Oversight. The sim-
plest multi-agent pattern chains tools or functions sequentially. An
agent reasons, calls a tool, incorporates the result, reasons again,
calls another tool. Modern agentic systems (from ReAct [15] to
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function-calling assistants) follow this pattern. The agent may in-
voke dozens of tools, but authority never leaves the single reasoning
loop.

Tool chaining provides flexibility and simplicity. But errors in
early steps compound through later ones. The agent that made a
mistake is the same agent evaluating whether a mistake was made.
Self-review is better than no review, but it shares the blind spots of
the original reasoning.

3.1.2  Sub-Agent Parallelization: Fan-Out for Throughput. Sub-agent
architectures extend tool chaining with parallelism. A parent agent
decomposes work, spawns child agents to execute subtasks con-
currently, and aggregates their outputs. Anthropic’s research sys-
tem [1] exemplifies this pattern, deploying 10+ sub-agents for com-
plex investigations with clearly divided responsibilities.

Sub-agents dramatically improve throughput for independent
tasks. Search ten databases simultaneously; fetch from multiple
APIs in parallel; explore alternative hypotheses concurrently. When
subtasks are genuinely independent, sub-agents provide clean par-
allelization.

The limitation emerges when subtasks are not independent. Sub-
agents cannot see sibling work. When one sub-agent assumes fiscal
year ends in December and another assumes March, the parent
receives conflicting outputs with no visibility into the conflicting
assumptions. Cognition’s analysis [4] identifies this as the primary
failure mode of naive multi-agent systems: “actions carry implicit
decisions, and conflicting decisions carry bad results.” The parent
aggregates outputs but cannot detect conflicts it cannot see.

3.1.3  Organizational Council: Stage-Gated Oversight. Our architec-
ture takes a fundamentally different approach. Rather than opti-
mizing for throughput, we optimize for a different property: errors
should die in committee, not surface to users.

The organizational council interposes critics at multiple stages
of execution. Work does not flow directly from producer to user. It
flows from producer to critic, and only approved work advances.
Rejected work triggers internal retry; the user never sees the first
draft with the wrong join logic, the chart that misrepresented the
trend, or the analysis that violated accounting standards.

Multiple specialized critics (for plans, code, outputs, and domain
methodology) each serve as filters with distinct failure modes. The
Swiss cheese principle (Section 1) applies: errors that slip through
one filter encounter another. Critics hold veto authority, not advi-
sory input; the mechanics of this authority structure are detailed
in Section 3.3.

3.1.4 The Architectural Tradeoff. Table 1 summarizes how each
pattern handles errors.

Table 1: Error Handling Across Multi-Agent Architectures

Pattern Error Detection User Exposure

Tool chaining
Sub-agent
Org. council

Self-review only
Parent aggregates
Stage-gated critics

Errors surface directly
Conflicts undetected
Only approved outputs

The tradeoft is cost. Tool chaining is cheapest: one reasoning
loop, minimal overhead. Sub-agents add parallelization cost but
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maintain single-point aggregation. Organizational councils multi-
ply inference calls: every critic evaluation, every retry loop, every
SME consultation adds latency and API cost.

We argue this cost is justified for high-stakes domains. A finan-
cial analysis that reaches the user with an incorrect calculation
damages trust and may drive poor decisions. An analysis that takes
longer but arrives correct builds confidence in the system. The or-
ganizational council trades latency for reliability, the same tradeoff
human organizations make when they institute review processes,
approval chains, and audit requirements.

3.1.5 Combining Patterns. These patterns compose rather than
compete. Our architecture uses organizational council structure at
the macro level (planners, executors, critics with stage-gated over-
sight) while individual teams may employ sub-agent parallelization
internally. CodingInnerLoopTeam operates as a council (writer —
executor — critic), but the executor may spawn sub-agents for
parallel file operations.

The principle: sub-agents for throughput within trust bound-
aries; organizational oversight across trust boundaries. Par-
allel execution is safe when subtasks are genuinely independent
and outputs will be validated before advancing. Stage-gated review
is essential when errors in one component affect correctness in
another, or when outputs will reach users.

The contract with users differs fundamentally from single-agent
or sub-agent systems. Those systems return what was produced.
Organizational councils return what was approved: outputs that
survived scrutiny from critics who did not produce them, evaluated
against criteria declared before execution began.

3.2 Architecture of the AI Office

3.2.1 Agent Specialization and Roles. The system comprises 50+
specialized agents organized by function and responsibility. Rather
than treating all agents identically, each type optimizes for its spe-
cific role:

e Planners: Parse user queries, refine for clarity, retrieve rel-
evant context from memory and metadata, construct exe-
cution DAGs, enforce domain guardrails, and manage plan
orchestration. These agents handle semantic understanding
and intention modeling.

o Executors: Orchestrate execution of plans, route work to ap-
propriate specialists, manage iterative refinement loops, and
coordinate across writing, execution, and critique phases. Ex-
ecutors handle deterministic state management and handoff
sequencing.

e Data Writers: Specialized per data source (SQL databases,
spreadsheets, Python environments, APIs, etc.). Each writer
generates appropriate code for its target system, enabling
agents to work with data sources through unified abstrac-
tions while leveraging source-specific optimizations.

e Critics: Domain-specialized validators that operate at dif-
ferent abstraction levels. Code critics verify correctness and
security; output critics validate against user intent and pre-
declared acceptance criteria; plan critics verify soundness of
execution DAGs. Each critic can veto independent of others.

o Responders: User-facing agents that handle approvals, es-
calations, clarification requests, and result synthesis. These
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agents manage the human-in-the-loop checkpoints and human-
readable output generation.

e Summarizers: Distill intermediate results into compact sum-
maries for downstream agents, enabling context minimiza-
tion without losing decision-relevant information.

e SME Experts: Domain specialists in financial analysis, visu-
alization, reconciliation, and other vertical domains. Provide
guidance during planning for complex queries requiring do-
main knowledge.

e Coordinators: Manage execution orchestration, route re-
quests to execution teams based on task classification, and
synchronize handoffs between phases.

Agent selection and composition are determined dynamically by
the planner based on each user request. Rather than using a fixed
team structure, each prompt causes the planner to compose special-
ized teams containing writers, critics, executors, and summarizers
selected based on the task requirements. The planner analyzes the
user request, identifies required data sources and domain expertise,
and constructs a team roster tailored to the specific problem.

The execution sequence follows a fixed pattern: Planner first,
Critics last, with iterative loops in between. The planner gen-
erates an execution DAG with pre-declared success criteria and
acceptance gates. Writers and executors then perform work, pro-
ducing outputs. Critics evaluate these outputs against the success
criteria; if approved, results advance; if rejected, the internal team
retries without replanning. This loop repeats until critics approve
or escalation occurs.

Team composition also leverages vendor diversity: writers and
critics run on different model providers to achieve cognitive diver-
sity and avoid monoculture. A writer might generate code using
one provider’s model, while a critic from another provider vali-
dates the output, catching errors that shared training would miss.
This cross-vendor strategy optimizes for different strengths: fast,
economical writers for routine generation; more capable critics for
rigorous validation.

FSM-based routing orchestrates this dynamic composition. The
system escalates to senior agents (larger, more capable models)
when disagreement occurs between critics or when standard agents
fail. See Section 3.5.1 for details on how model allocation scales
capability with task complexity. Figure 1 illustrates the complete
multi-agent FSM architecture with these workflow stages integrated
across planning, execution, and validation phases.

3.2.2 The Data Infrastructure Layer. Five-layer data kernel provid-
ing standardization and routing:

¢ Intake & Standardization: Connectors abstract 15+ data
sources (Snowflake, BigQuery, PostgreSQL, Stripe, Quick-
Books, Workday, CSV, Excel, JSON, PDF, OpenMetadata);
normalized to common internal format

e Transformation & Routing: DataWrangler provides 50+
composable primitives; agents request operations; kernel ex-
ecutes transformations; router directs outputs to appropriate
next agent

e Validation: GuardrailsAgent enforces policies; column-level
lineage tracking; schema validation; data quality checks be-
fore agent processing
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Figure 1: Multi-agent FSM architecture with color-coded execution phases.

o Synthesis: OutputCritique validates team outputs against ac-
ceptance criteria; approved results formatted for downstream
consumption; rejected results trigger team re-execution

e Persistence: Vector memory (PostgreSQL + pgvector) cap-
tures insights; indexed by scope (account/user/session); se-
mantic search across all prior analyses

3.2.3  Agent Coordination and Communication. Drawing from AIOS [7],
our system operates like a cooperative message passing kernel
where agents yield control rather than running entirely concur-
rently, communicating through structured messages. The following
mechanisms enable team-based orchestration with clear role bound-
aries:

e Message passing: Agents communicate through Pydantic-
validated structured messages, avoiding plain text tokens for
inter-agent communication. Each message is strongly typed,
enabling type safety across agent boundaries and eliminating
parsing ambiguity. Message visibility is filtered based on

FSM state, ensuring agents receive only messages relevant
to their role and phase. This architecture is analogous to
inter-process communication in operating systems, where
structured protocols replace ad-hoc text formats.

Handoff pattern: Agents delegate to specialists; PlanMan-
ager routes to PlanExecutor — CodingInnerLoopTeam —
Critics; explicit role boundaries prevent cross-contamination.
Critically, handoff abstracts internal execution details: if a
task requires three retries to succeed, the manager layer re-
ceives only the final approved output, not the retry history or
intermediate failures. Only semantic memory captures (e.g.,
insights about data patterns or edge cases discovered during
retries) propagate upward to improve future attempts; exe-
cution mechanics remain encapsulated within team bound-
aries.

Checkpointing: At decision points and after each phase,
the entire ordered state of all agents (including their context,
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reasoning, intermediate results, and execution status) is com-
pletely serialized and persisted as a checkpoint. This enables
users to keep sessions active indefinitely: a session can pause,
and users can return days or weeks later to resume from the
exact checkpoint. More powerfully, users can time-travel
backward to any previous checkpoint to undo changes, ex-
plore alternative paths, or retry with different parameters,
without losing work or context. Each checkpoint represents
a complete, reproducible snapshot of the multi-agent system
state.

¢ Dependency management: Explicit dependencies in execu-
tion plans; parallel execution where independent; sequential
where dependencies exist

o Authority paths: Decision-making follows a strict hierar-
chy, never horizontal consensus. Veto authority flows up-
ward: when a critic rejects output, authority returns to the
internal team to retry without propagating failure upward or
seeking consensus from peers. Approvals flow upward: when
a critic approves, the result escalates to the next decision
point (parent coordinator, final output gate, or user). This
asymmetry ensures that rejections are handled locally within
team boundaries while approvals enable work to progress.

o Escalation: Failures are contained and resolved at the lowest
appropriate level. Persistent internal team failure (repeated
rejections despite retries) escalates to the user for replanning,
acknowledging that the team cannot solve the problem un-
der the current plan. Policy violations (guardrails triggered,
security constraints violated, compliance checks failed) im-
mediately escalate to a user gate for explicit approval before
proceeding. Unresolvable contradictions (critics disagree fun-
damentally, different validators reject for conflicting reasons)
escalate to human review, recognizing that the system can-
not adjudicate the conflict autonomously.

3.3 Team-Based Execution with Pre-Declared
Acceptance Testing

3.3.1 Role-Based Execution Structure. Execution follows a fixed,
sequenced pattern: Planner first, Critics last, with iterative
loops in between.

Stage 1: Planning. The planner analyzes the user request, iden-
tifies required data sources and domain expertise, and constructs a
detailed execution DAG. Critically, the planner pre-declares accep-
tance criteria upfront in the plan. These criteria are not emergent
or subjective; they are explicit decision gates that critics will ap-
ply. The plan specifies what success looks like before any work is
performed.

Stage 2: Human approval. The execution plan is presented to
the user for review and explicit approval. No execution proceeds
without human sign-off on the plan and its criteria. This is an
architecturally enforced gate; the system will not execute without
user approval.

Stage 3: Isolated execution. Upon approval, the plan executor
orchestrates specialized teams (writers, executors, summarizers)
with strict context isolation. Team chatter does not contaminate
the parent planning scope. Writers generate code; executors run it;
results are aggregated and passed to critics.
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Stage 4: Critic evaluation and iterative loop. Critics evalu-
ate outputs against the pre-declared criteria. If approved, results
advance. If rejected, authority returns to the internal team to retry
without replanning. This loop repeats until critics approve, criteria
are met, or persistent failure triggers escalation to the user.

3.3.2  Veto Authority and Acceptance Criteria. The architecture ap-
plies the Swiss cheese model: multiple validation layers with mis-
aligned failure modes prevent errors from propagating to users.

e Pre-declared acceptance: Acceptance criteria are defined
upfront in the plan, not emergent or subjective. Critics eval-
uate against these explicit gates.

o Critic veto: The critique agent can reject outputs entirely,
triggering internal team retry without re-planning. This
catches errors before they propagate downstream.

e Authority hierarchy: Code writers cannot declare their
own success. Executors cannot declare success. Only inde-
pendent critics can approve work for advancement.

e No self-certification: Passing automated tests is insuffi-
cient. Outputs must meet pre-declared criteria evaluated by
a critic, providing an imperfect but independent layer that
catches errors tests miss.

o Iterative refinement: Failed critiques trigger re-execution
within team boundaries, while successful critiques propagate
results upward. Because critics have different failure modes
than producers, errors rarely escape all layers.

o Escalation: Persistent rejection after multiple retries esca-
lates to the user for replanning.

3.4 Remote Code Execution: Separating Brains
from Hands

The remote code executor provides a critical separation: reasoning
models (the brains) never directly touch raw data or tool outputs.
Instead of agents calling tools directly (which would inject full API
responses into their context), agents write code that invokes tools
like MCP servers; those tool responses remain in the remote execu-
tion layer. Inspired by operating system abstractions for resource
management [7], this architecture maintains clean boundaries be-
tween perception and execution, preventing context contamination
while enabling scalable data transformations and API interactions.

3.4.1 Core Responsibility. Maintains separation between reason-
ing (perception) and execution (data transformation + tool invoca-
tions):

e Context isolation: Raw data and tool outputs never enter
agent context windows; agents perceive summaries, schemas,
and sample rows rather than full datasets or API responses;
prevents context contamination

e Code-based tool invocation: Agents write code to invoke
tools (MCP servers, APIs) rather than calling them directly;
tool responses remain in remote execution layer; only rele-
vant extracts return to agent context

¢ Remote execution: Transformation code and tool invoca-
tions execute in isolated environment; heavy data manipu-
lation and API calls happen away from reasoning models;
separation of brains (agents) from hands (executor)
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Figure 2: Multi-Agent Execution Flow - Analysis Cycle 1. Participants are color-coded by architectural phase: gray (user layer),
blue (planning), green (execution), orange (validation), and purple (coordination). Interactions are grouped by phase with
colored boxes showing the progression from planning through specialized execution teams to multi-layer validation before
user presentation.

Input standardization: Connectors convert all sources
(Snowflake, CSV, Stripe, MCP) to unified schema; agents
reason about consistent abstractions

Routing: The Plan executor routes transformation requests
to appropriate teams containing code writers, executors and
critiques.

Synthesis: Aggregates results from multiple agents; returns
only relevant summaries to reasoning context; conflict reso-
lution; deduplication

Integrity: The summarizers extract column-level lineage
for each step, explain the math in LaTeX symbols for com-
plex operations and record information needed to verify
references across transformations

Optimization: The agents can optimize operations to reuse
intermediate results, recompute new summaries from them

e Vowels (semantic high-level): Entity extraction, relation-
ship discovery, concept normalization, semantic similarity,
temporal alignment

o Consonants (structural): Filter, select, project, join, aggre-

gate, group-by, pivot, unpivot, union, difference, distinct,

sort, limit, window functions, type conversions

Punctuation (control flow): Conditional execution, branch-

ing, loop-until, parallel map, error handling, fallback paths,

logging checkpoints, audit trails

e Composition: Finite set of primitives (vowels + consonants
+ punctuation) compose into infinite possible data workflows;
enables both simple (one-step) and complex (multi-step) op-
erations

or load data back into source systems as temporary tables
for further joins or filtered aggregations

3.4.3 Context Isolation and Optimization. The remote code execu-
tor enforces strict boundaries: execution results return only what
the planner explicitly requested, preventing context leakage from
the execution layer back to the planning context. When a planner
asks for a query result, the executor returns summaries and statis-
tics, not raw data rows. When intermediate steps generate artifacts
or side-effects, these remain in the execution context and are not

3.4.2 Transformation Primitives (50+ Operations). Organized as
vowels/consonants/punctuation composable alphabet:
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injected back into the reasoning layer unless explicitly extracted
via specific requests.

Critically, results are held by the executor and remain available
for subsequent planning phases. A planner can request alterna-
tive summaries of already-computed results: asking for a category
breakdown by State when the executor previously returned ag-
gregated totals, or requesting a distribution function over revenue
numbers. This selective access allows planners to explore the ex-
ecution results through different lenses without leaking the full
working dataset into planning context.

This isolation serves two purposes. First, it minimizes the work-
ing set of information available to planning agents, reducing hal-
lucination surface and token consumption. Planners reason about
data shape and content without holding the full dataset in context.
Second, it prevents unintended coupling where execution details
(transient errors, intermediate states, implementation choices) con-
taminate planning decisions. The planner’s context remains clean,
focused on the high-level task specification.

Future work will quantify the context minimization achieved
through this selective integration, measuring context window con-
sumption reduction and its impact on both token efficiency and
hallucination rates across execution stages.

3.5 Comparison: Traditional Single-Agent vs. Al
Office

Table 2 summarizes the key differences between traditional single-
agent systems and our Al Office architecture across nine dimen-
sions, organized by architectural foundations, execution pipeline,
and production readiness.

3.5.1 Key Architectural Differentiators. Adaptive model alloca-
tion. Like staffing a team: junior analysts handle routine work;
senior specialists engage when complexity demands. Writers start
with fast, economical models; upgrade only on critique failure. Crit-
ics run on different models than writers for cognitive diversity, not
self-review. Cross-provider fallback ensures resilience. Cost and la-
tency scale with task difficulty: cheap and fast by default, thorough
when stakes demand it.

Separation of perception and execution. LLMs orchestrate
like expert analysts directing work, not clerks processing spread-
sheets. Agents write code; Jupyter executes against real data; only
schemas and summaries return to context. Raw data never touches
LLM, solving context limits (working set > context window), data
sensitivity (PII stays in execution layer), and hallucination (answers
grounded in code execution, not confabulation).

Strategic LLM boundaries. Single-agent systems route every-
thing through LLMs, compounding unreliability. AI Office deploys
LLMs surgically for reasoning (planning, critique, summarization)
while deterministic code handles orchestration: FSM routing, state
reconstruction, step sequencing. PlanExecutor never asks an LLM
“what’s next.”

Hierarchical veto, not consensus voting. Specialized crit-
ics (CodeCritique for standards, ChartCritique for visualization,
OutputCritique for user intent, PlanCritique for plan soundness in-
cluding dataflow integrity, goal alignment, and domain constraints)
each hold independent veto authority in their domain; like auditors
who can each halt a release for different violations, unanimous
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approval is required for advancement, and new domain critics slot
in without modifying existing validators.

4 Use Cases and Evaluation
4.1 Financial Domain Case Study

4.1.1  Problem Statement. Accounts payable reconciliation requires
matching vendor invoices against recorded expenses, a task compli-
cated by vendor name variations, split payments across periods, and
timing differences between invoice dates and payment records. We
evaluate the multi-agent architecture on a representative Q1 2025
reconciliation task: matching 9 PDF invoices from 3 vendors (health-
care, telecommunications, cloud services) against a QuickBooks
Online expense summary.

The consequences of extraction errors in this domain are sig-
nificant. Missing invoice numbers break audit trails and prevent
duplicate detection. Incorrect amounts cause financial misstate-
ments that propagate to management reports and regulatory filings.
Wrong dates lead to period misallocation, affecting month-end close
accuracy. In traditional single-agent pipelines, such errors would
require manual review of raw documents, a process that scales
poorly when reconciling hundreds of invoices monthly.

The architecture generalizes beyond this representative session:
production deployments process hundreds of invoices per cycle,
query accounting systems directly via API rather than exported
spreadsheets, perform sub-line-item reconciliation matching indi-
vidual charges to expense categories, and conduct trend analysis
identifying month-over-month outliers for anomaly detection.

4.1.2  System Application. The system decomposed the reconcilia-
tion task into an 8-step execution plan (Figure 3): three parallel PDF
extraction steps (one per vendor schema), Excel parsing for the ex-
pense report, invoice consolidation, vendor name standardization
with fuzzy matching, reconciliation logic applying configurable
thresholds, and output generation. Each step executed within the
inner-loop critique cycle described in Section 4.2.

The Code Critique layer detected extraction failures that would
otherwise propagate silently. During PDF parsing, the critic identi-
fied missing required fields: invoice_number absent from health-
care invoices (preventing audit trail linkage), date_of_issue miss-
ing from telecommunications invoices (causing temporal misalign-
ment), and total_in_usd unparsed from cloud service invoices
(yielding null amounts). Each failure triggered automatic retry with
refined extraction logic, requiring 4, 2, and 2 iterations respectively
before satisfying acceptance criteria.

4.1.3 Results. The reconciliation achieved an 88.89% match rate,
successfully matching 8 of 9 invoices totaling $4,678.25 against
recorded expenses. One invoice ($425) remained unmatched due to
a payment pending in the subsequent period (a legitimate business
condition rather than system error). The system correctly catego-
rized this as PAYMENT_PENDING based on recency heuristics.
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Table 2: Comparison of Single-Agent vs. AI Office Architecture

Dimension Single-Agent

Al Office

Execution Pipeline

Context hygiene
context contamination compounds errors

Data isolation
overflow)

Data grounding
prone, unverifiable claims)

Correctness Self-review insufficient;

unchecked to output

Full conversation history to all components;

Raw data in LLM context (privacy risk, context

LLM generates answers directly (hallucination-

errors propagate

Message filtering per agent role: planners see user intent and retrieved
context; executors see step plans and prior outputs; critics see execu-
tion results. No cross-contamination between phases

Data never touches LLM; agents receive schemas and summaries only

Agents generate code; Jupyter executes against real data sources.
Every number traceable to executed query, not confabulation

Multi-layer validation with domain-specialized critics; any layer can
veto and trigger retry before propagation

Production Readiness

Resilience Single failure terminates task; no recovery path

Extensibility Monolithic prompt; changes risk regressions
across capabilities

Auditability Opagque reasoning; no decision trail

Graceful degradation: model upgrade on failure, cross-provider fall-
back, checkpoint-based resume from any decision point, escalation to
human on persistent failure

FSM-based routing; add agents, writers, or critics without modifying
core. 50+ agents, 32 data writers, 15+ sources, each independently
testable and evolvable

Event-sourced SessionLog with column-level lineage. Work back-
wards from any result; trace decisions through agent chain; exposure
analysis when upstream data changes
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Figure 3: Financial reconciliation pipeline execution. The Code Critique inner loop (left, dashed) shows Step 1 requiring 4
iterations to extract missing invoice_number fields. Steps 2—3 similarly required 2 iterations each. Steps 4-8 passed on first
attempt. The reconciliation step applies fuzzy matching (>0.85), amount tolerance (+$0.01), and timing windows (+7 days) to

produce an 88.89% match rate.

Table 3: Extraction Errors Caught by Code Critique

Vendor Type Missing Field Iterations Consequence if Missed
Healthcare invoice_number 4 Broken audit trail
Telecom date_of_issue 2 Period misallocation
Cloud total_in_usd 2 Null amount propagation

Without multi-agent verification, all three extraction errors would
have produced structurally valid but semantically incorrect output:
DataFrames with proper schemas but null or missing values in
critical fields. These errors are particularly insidious: downstream
reconciliation logic would execute without exception, producing

plausible but incorrect match rates. The 5 automatic retries (13
total critique iterations across 8 steps) represent errors that would
otherwise require manual debugging after observing unexpected
reconciliation failures.

Total session time was 12.8 minutes, acceptable for batch rec-
onciliation workflows where correctness outweighs latency. The
critique overhead (approximately 40% of session time on retry itera-
tions) is justified by the alternative: manual review cycles measured
in hours when extraction errors surface during financial close.
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4.2 Evaluation Metrics and Analysis

We evaluated the multi-agent architecture across 522 production
sessions to measure recovery effectiveness and cost-benefit trade-

offs.

4.2.1 Probabilistic Analysis of Cascaded Critique Layers. The multi-
agent architecture employs a three-layer cascaded critique system:
(1) Code Critique for code generation tasks, (2) Chart Critique for
visualization tasks, and (3) Output Critique for holistic validation.
We model each layer’s effectiveness using conditional probability
to quantify their individual and compound contributions.

Table 4: Three-Layer Critique System Effectiveness

Layer Scope Input Catch Rate Cumul
LO0: First Pass Clean pass 522 130 24.9% 24.9%
L1: Code Code errors 392 337  86.0% —
L1: Chart Chart errors 392 7 1.8% -
L1: Combined  Inner loop 392 344  87.8% 90.8%
L2: Output Output quality 48 7 14.6% 92.1%
Residual User rejected 41 — — 7.9%

Let P(E) = 0.75 denote the base error rate (392/522 sessions
required critique intervention). For the inner loop (L1), Code and
Chart critiques address distinct failure modes: Code Critique catches
337 sessions (86.0%) involving syntax errors, logic bugs, and API mis-
use, while Chart Critique catches 7 sessions (1.8%) with visualization-
specific issues. The combined inner loop catch rate is P(catch;) =
344/392 = 87.8%.

The Output Critique (L2) operates on the 48 sessions that escaped
the inner loop, achieving P(catch,) = 7/48 = 14.6%. The probability
that an error escapes all layers is:

P(user rej.) = P(E) X (1 — P(catch;)) x (1 — P(catchy))
=0.75x%0.122 X 0.854 = 0.078 (1)

This matches our observed 7.9% user disapproval rate (41/522).
The cascaded probability model assumes conditional independence
between critique layers; that is, an error’s probability of escaping
L2 is independent of whether it escaped L1. While the empirical
specialization of critics (Code vs. Chart vs. Output) suggests low
overlap in failure modes, this independence assumption is an ap-
proximation used for tractability rather than a proven property.

Diminishing Returns Analysis. Each successive layer catches
a smaller absolute number of errors: the Inner Loop (L1) saves
344 sessions (+65.9%). Code Critique catches 337 sessions (86.0%
of errors), while Chart Critique catches 7 sessions (1.8%) address-
ing visualization-specific issues such as incorrect chart types and
axis configurations. Output Critique (L2) adds 7 saves (+1.3%). A
hypothetical fourth layer with equivalent effectiveness to L2 would
reduce the escape rate from 7.9% to 6.7%, saving only 6 additional
sessions while incurring additional latency and compute costs. More
critically, errors that escape all three critics exhibit qualitatively
different characteristics: requirement ambiguity (correct implemen-
tation of misunderstood intent), subjective preferences (technically
valid but stylistically misaligned), and domain-specific edge cases.
These error types are fundamentally resistant to automated cri-
tique and require human-in-the-loop resolution. The observed 7.9%
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Figure 4: Multi-agent session recovery flow. Of 522 sessions,
130 succeeded on first pass, 344 recovered through Code Cri-
tique (337) and Chart Critique (7), 7 recovered via Output
Critique, and 41 were rejected by users.

residual thus represents a practical irreducible floor for automated
systems, making three critics across two layers an optimal balance
between quality assurance and system efficiency.

4.2.2  Session Recovery Flow. Figure 4 illustrates the session recov-
ery flow across 522 production sessions.

The system achieved a 92.1% overall success rate. Of sessions
requiring recovery, 40.1% resolved within 1-2 additional iterations
(quick recovery), demonstrating the efficiency of the critic-triggered
retry mechanism. Only 7.9% of sessions ended in user disapproval,
indicating that internal quality gates successfully filter most errors
before user exposure. An additional 30 sessions (5.7%) triggered a
replan request, where the system identified missing information
and prompted users for additional inputs (e.g., supplementary doc-
uments, clarifying parameters) before proceeding with analysis.

4.2.3 Cost-Benefit Analysis. Tables 5 and 6 quantify recovery cost
across iteration levels for the 392 sessions that required retry.
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Figure 5: Credit cost by recovery level. Level 3 sessions ac-
count for 68% of all recovery credits despite representing
only 28% of sessions.

Table 5: Credit Cost by Recovery Level (n=392 sessions)

Recovery Level Sessions Total Recovery %
Level 1 (1-2 extra) 157 3,504.5 686.8 19.6
Level 2 (3-5 extra) 126 5,756.4 1,831.2 318
Level 3 (6+ extra) 109 11,065.0 5324.1 48.1
Total 392 20,3259 7,842.1 38.6

Credits charged to customer. Recovery = credits on iterations > 1.

Table 6: Time Cost by Recovery Level (n=392 sessions)

Recovery Level Sessions  Total (hrs) Recovery %
Level 1 (1-2 extra) 157 12.3 1.2 10.0
Level 2 (3-5 extra) 126 14.4 3.1 216
Level 3 (6+ extra) 109 26.0 71 274
Total 392 52.7 11.5 218

Time = active processing time (excludes user idle gaps >30s).

Key findings from the recovery analysis:

e 40% of sessions (157/392) recovered within 1-2 extra it-
erations with only 19.6% credit cost and 10.0% time cost,
demonstrating efficient error correction for most cases.

o Token cost exceeds time cost: Recovery consumes 38.6% of
credits but only 21.8% of active time, as LLM calls dominate
cost while execution is fast.

e Heavy-tail distribution: Level 3 sessions (6+ extra itera-
tions) represent 28% of sessions (109/392) and consume 68%
of recovery credits but only 62% of recovery time.

e Total recovery investment: 7,842 credits and 11.5 hours
of active processing to achieve 92.1% success rate across 392
sessions that required code critique.

Figures 5 and 6 visualize the cost breakdown by recovery level,
illustrating the disproportionate resource consumption at Level 3.

4.2.4  Error Detection Rate. Errors Detected Through Consen-
sus. The cascaded critique system detected and resolved errors in
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Figure 6: Time cost by recovery level (active processing time).
Level 3 sessions spend 27% of time in recovery, far less than
their 48% credit share.

92.1% of sessions (481/522). Of sessions requiring intervention, the
inner loop (Code and Chart Critique) achieved consensus on 344
sessions (87.8% of 392), while Output Critique resolved an addi-
tional 7 sessions. The remaining 41 sessions (7.9%) required user
intervention to identify issues that automated critics missed.

False Negative Rate. We define false negatives as errors that
escape all critique layers and reach user review. The observed false
negative rate is 7.9% (41/522 sessions). These errors exhibit charac-
teristics resistant to automated detection: requirement ambiguity
where implementation was technically correct but misaligned with
unstated intent, subjective preferences where output quality was
acceptable but stylistically mismatched, and domain-specific edge
cases requiring context unavailable to critics. This 7.9% represents
a practical floor for the current architecture.

False Positive Rate. False positives (valid outputs wrongly re-
jected by critics, causing unnecessary retries) cannot be directly
measured in production without ground-truth labels for each itera-
tion. Measuring false positives would require determining whether
original code was correct before critic-requested modifications, in-
formation unavailable post-hoc. However, we note that the iterative
retry mechanism is self-correcting: if a critic incorrectly flags valid
work, subsequent iterations converge toward approval. Platform-
level prompt refinements address systematic false positive patterns
as they emerge through operational monitoring. The absence of ex-
plicit false positive measurement is a limitation; future work could
employ held-out labeled datasets to quantify this rate.

Disagreement Patterns. Code and Chart critiques address or-
thogonal failure modes with minimal overlap. Of 392 sessions re-
quiring inner-loop intervention, 385 involved Code Critique (syntax,
logic, API errors) while 7 involved Chart Critique (visualization
issues). This specialization validates the Swiss cheese model: critics
with distinct failure modes catch errors that homogeneous review
would miss. Cross-critic disagreement (one approving while an-
other rejects) was not observed in this dataset, as critics evaluate
different output dimensions rather than the same artifact.
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4.3 Comparative Analysis

To contextualize the multi-agent architecture’s 92.1% success rate,
we compare against single-agent baselines using the financial rec-
onciliation task from Section 4.1.

4.3.1 Single-Agent Baseline. We executed the identical reconcilia-
tion task (9 invoices against QBO expense report, $40 ground-truth
discrepancy) using a single-agent approach with a frontier model
from a leading vendor.! Across 10 independent trials with identical
inputs:

e 6 trials (60%): Correctly identified the $40 discrepancy

e 3 trials (30%): Reported incorrect discrepancy amounts

e 1 trial (10%): Reported “no discrepancy found”

Critically, the model asserted high confidence in all 10 trials,
providing no signal to distinguish correct from incorrect results.
Average completion time was 1-2 minutes.

4.3.2  Self-Verification Baseline. We tested whether prompting the
model to verify its own output improves accuracy. After initial
reconciliation, we prompted: “please verify your reconciliation”
Across 5 trials where the model initially identified the correct $40
discrepancy:

e 3 trials: Changed from correct to incorrect (“I misinter-

preted... no discrepancy”)
e 2 trials: Maintained the correct answer

Self-verification reduced accuracy rather than improving it. The
same reasoning process that produced the initial answer cannot
reliably evaluate it: the model second-guesses correct conclusions
while maintaining confidence in incorrect ones.

These baselines are illustrative rather than exhaustive and are
intended to contextualize error modes rather than establish state-
of-the-art comparisons.

4.3.3  Multi-Agent Architecture. We executed the same financial
reconciliation task using our multi-agent architecture across 20
independent trials. The system achieved 90% accuracy (18/20 cor-
rect), with extraction errors automatically detected and corrected
through the Code Critique layer.

Table 7: Single-Agent vs. Multi-Agent Comparison

Approach Trials  Acc. Time Error Signal
Single-agent 10 60% 1-2 min None
Single + self-verify 5 <60%  2-3 min Self-doubt
Multi-agent (ours) 20 90% 4.2 min Auto-retry

The multi-agent architecture achieves significantly higher ac-
curacy by introducing external verification through independent
critics. Unlike self-verification, the Code Critique agent evaluates
outputs using different reasoning than the agent that produced
them, enabling detection of errors that self-checking misses. The 2—-
3x latency overhead (4.2 min vs. 1-2 min) is justified for workflows
where correctness outweighs speed. A $40 reconciliation error in
financial close has consequences far exceeding the cost of additional
compute time.

ISession transcripts available at https://tinyurl.com/ywédtztn
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5 Discussion

5.1 Key Insights

5.1.1 Orthogonal Failure Modes Validate Role Specialization. The
inner loop’s 87.8% catch rate reflects a structural property: Code
Critique and Chart Critique address fundamentally different failures.
Of 392 sessions requiring inner-loop intervention, 385 involved
Code Critique while only 7 involved Chart Critique (1.8%), and these
populations are mutually exclusive. This independence validates
the Swiss cheese model empirically: specialists with different focus
areas catch errors that homogeneous review would miss.

The implication for critic design: prioritize orthogonality over re-
dundancy. A fourth critic duplicating Code Critique’s failure modes
catches few additional errors. A critic targeting a genuinely differ-
ent class (data lineage validation, regulatory compliance) extends
coverage into unprotected territory.

5.1.2  The 7% Residual: Automation’s Ceiling. The 41 sessions where
all critics approved but users rejected share a common characteristic:
they require information absent from the execution context.

e Requirement ambiguity: Correct implementation of in-
correctly stated intent

o Subjective preferences: Technically valid but stylistically
misaligned (chart colors, verbosity)

¢ Domain edge cases: Correct methodology misapplied to
unusual patterns (fiscal year boundaries, industry-specific
treatments)

A hypothetical fourth layer with equivalent effectiveness to
Output Critique (14.6%) would reduce the escape rate from 7.9%
to 6.7%, saving only 6 additional sessions at significant cost. The
7% floor represents errors that automated systems cannot resolve
without external input. This suggests 93% as the practical ceiling
for automated verification on tasks of this complexity.

5.1.3  When Overhead is Justified. The roughly 40% credit over-
head buys error containment: mistakes die in committee rather
than reaching users. For financial analysis, an incorrect calcula-
tion driving poor decisions costs far more than compute overhead.
The cost-benefit calculus depends on error severity. High-stakes
tasks (regulatory filings, board presentations) justify full validation;
low-stakes tasks (exploratory analysis) may not.

5.2 Limitations

Domain specificity. Our evaluation covers financial analysis ex-
clusively. The architectural principles should transfer, but catch
rates may differ in domains with more subjective outputs or less
well-defined correctness criteria.

Cost at scale. This overhead becomes significant at high volume.
Production deployments must route high-stakes work through full
validation while allowing routine tasks lighter-weight paths.

Latency. Each critic layer adds sequential latency. For real-time
or interactive use cases, this tradeoff may be unacceptable without
parallel critique execution.

The 7% floor. For applications requiring near-perfect accuracy
(drug discovery, safety-critical systems), 93% success is insufficient.
These domains require human review of all outputs or fundamen-
tally different verification approaches.


https://tinyurl.com/yw6dtztn
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5.3 Implications for Production Al

5.3.1 Deployment Decisions. Three factors determine suitability:

(1) Error tolerance: If the residual 7% error rate is acceptable,
deploy with confidence. If sub-1% is required, plan for human-
in-the-loop review of all outputs.

(2) Cost sensitivity: The cost premium is justified when error
costs exceed compute costs. This is typically true for high-
value, low-volume tasks.

(3) Latency requirements: Multi-layer critique adds sequen-
tial delay. Real-time applications need parallel critique or
reduced coverage.

5.3.2  Operational Considerations. The stage-gated architecture
provides natural observability: each critic decision, retry, and es-
calation generates structured events enabling quality dashboards,
cost attribution, and failure analysis. The event-sourced SessionLog
supports graceful degradation. Model fallback, checkpoint recov-
ery, and escalation paths ensure partial failures degrade to slower
operation rather than incorrect output.

5.4 Future Work

Adaptive critic selection. Learning which critic configurations
optimize for different task types could reduce overhead while main-
taining catch rates. Sessions with complex joins might benefit from
data validation critics; visualization-heavy tasks might warrant
expanded chart critique.

Cross-domain evaluation. Validating across legal document
analysis, medical record summarization, code generation, and gen-
eral data analysis tasks would establish generalizability bounds and
inform domain-specific critic design.

Parallel critique. For independent critics, concurrent execution
could reduce latency without sacrificing coverage.

Formal failure mode analysis. Formalizing the independence
between critic failure modes, whether through information-theoretic
or causal analysis, would provide theoretical grounding for princi-
pled critic design beyond empirical trial-and-error.

6 Conclusion

We demonstrate that organizational principles of reliability transfer
directly to Al system design. Coherence emerges not from a single
optimized agent, but from opposing forces holding outputs within
acceptable boundaries. In production systems, a Planner pushes
for clarity, an Executor for pragmatic implementation, and Crit-
ics for correctness. These conflicting incentives create consensus
boundaries that prevent drift.

Evaluated on 522 production financial analysis sessions, our
multi-agent architecture achieves 92.1% success rate, reducing the
baseline error rate from 75% to 7.9% residual. This 67 percentage-
point improvement comes from cascaded critique: an inner loop
(Code and Chart critics) catches 87.8% of errors through orthogonal
specialization, while an outer loop (Output Critique) saves an addi-
tional 14.6% of remaining failures. Single-agent approaches achieve
only 60% accuracy on the same tasks, with no reliable error signal.
Self-verification degrades accuracy further; the same reasoning
process that produced an answer cannot reliably evaluate it.

Isotopes Al

The near-independence of Code Critique (86.0% catch rate on
syntax, logic, and API misuse) and Chart Critique (1.8% on visualiza-
tion issues) validates the Swiss cheese model empirically. Specialists
with different failure modes catch errors that homogeneous review
misses. This orthogonality has practical implications: a fourth critic
layer with equivalent effectiveness would save only 6 additional
sessions (reducing escape rate from 7.9% to 6.7%) while adding la-
tency and cost. The 7.9% residual represents errors fundamentally
resistant to automated critique: requirement ambiguity, subjective
preferences, and domain edge cases that require external context
unavailable to any critic.

This reliability costs 38.6% computational overhead, measured
across 392 sessions requiring recovery. Token costs (38.6% of cred-
its) exceed time costs (21.8% of active hours), indicating LLM calls
dominate expense. The distribution is heavy-tailed: 40% of recovery
sessions resolve within 1-2 iterations at 19.6% credit cost, while the
most complex 28% consume 68% of recovery credits. For high-stakes
financial tasks where a $40 reconciliation error propagates to regu-
latory filings, this overhead is justified. For exploratory analysis,
lighter-weight paths may be appropriate. Production deployments
can route requests strategically: full validation for board presenta-
tions and regulatory filings, lighter paths for exploratory queries
where iteration cost exceeds error cost.

The multi-agent architecture offers an underappreciated benefit:
it sidesteps the complexity trap of monolithic prompts. A single-
agent system serving diverse tasks accumulates instructions, edge
cases, and domain knowledge into an ever-growing system prompt.
This bloat degrades performance, increases latency, and makes
maintenance fragile. By contrast, each agent in our architecture
carries a focused prompt for its specific role. The Planner knows
planning; the Code Critique knows code review; the Chart Critique
knows visualization standards. Adding capability means adding a
new specialist agent, not appending paragraphs to a central prompt.
The system grows by composition rather than accumulation.

This composability extends to model selection. Different agents
can use different providers, matching model strengths to task re-
quirements. A planning agent benefits from strong reasoning; a
code writer benefits from training on code corpora; a summarizer
benefits from concision. When a new model releases with improved
capabilities in a specific domain, we swap one agent’s backend
without touching the others. The architecture treats models as in-
terchangeable components rather than monolithic dependencies.
This multi-vendor strategy provides resilience against provider out-
ages, pricing changes, and capability regressions while enabling
continuous improvement as the model landscape evolves.

The deployment decision reduces to a single question: Is your
domain tolerant of 7.9% residual error? For mission-critical systems
where error consequences are severe (financial close, regulatory re-
porting, operational decisions), the answer is typically yes, and the
architecture supports confident deployment. For domains requir-
ing near-perfect accuracy (drug discovery, safety-critical control
systems), 92.1% is insufficient and human review remains necessary.

Our results are grounded in financial analysis. The architectural
principles (role specialization, orthogonal critique, stage-gated over-
sight) should transfer to domains with well-defined correctness
criteria: legal document analysis, medical record extraction, code
generation. Catch rates will differ with output subjectivity. Tasks
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with fuzzy success criteria (creative writing, open-ended research)
may not benefit equally. Cross-domain evaluation remains essential.

Three limitations constrain interpretation. First, we evaluated
522 sessions from a single domain; generalization across problem
types is plausible but unproven. Second, 40% overhead becomes
prohibitive at high volume; production systems must route requests
strategically. Third, sequential critique adds latency (e.g., 12.8 min-
utes for complex financial reconciliation) unsuitable for real-time
applications without parallel execution.

Beyond error reduction, the architecture provides secondary
benefits that practitioners value: natural observability (each critic
decision generates structured audit events), graceful degradation
(checkpointing enables recovery from partial failures), and data
isolation (raw data never enters agent context, simplifying multi-
tenancy and compliance).

Open questions remain. Can adaptive critic selection optimize
for task characteristics? What is the false positive rate; how many
valid outputs did critics wrongly reject? Can parallel execution
reduce latency without sacrificing coverage? Does formal failure-
mode analysis provide principled guidance for critic design beyond
empirical trial?

This work demonstrates that organizational reliability principles
translate into concrete Al architectures. The Swiss cheese model,
veto authority, and stage-gated oversight are not metaphors but
mechanisms. As LLM capabilities improve, the limiting factor shifts
from raw capability to coherence and verification. Multi-agent archi-
tectures that orchestrate teams of rivals, each with veto authority
over acceptable outputs, provide a practical path to production
reliability.

References

[1] Anthropic. 2024. Building effective agents. Anthropic Research Blog. https:
//www.anthropic.com/research/building-effective-agents

[2] Mert Cemri, Melissa Z. Pan, Shuyi Yang, Lakshya A. Agrawal, Bhavya Chopra,
Rishabh Tiwari, Kurt Keutzer, Aditya Parameswaran, Dan Klein, Kannan Ram-
chandran, Matei Zaharia, Joseph E. Gonzalez, and Ion Stoica. 2025. Why
Do Multi-Agent LLM Systems Fail? arXiv preprint arXiv:2503.13657 (2025).
arXiv:2503.13657 [cs.Al]

[3] Zhijun Chen, Jingzheng Li, Pengpeng Chen, Zhuoran Li, Kai Sun, Yuankai Luo,
Qianren Mao, Ming Li, Likang Xiao, Dinggi Yang, Yikun Ban, Hailong Sun, and
Philip S. Yu. 2025. Harnessing Multiple Large Language Models: A Survey on
LLM Ensemble. (2025). arXiv:2502.18036 [cs.CL]

[4] Cognition AL 2025. Don’t Build Multi-Agents. Cognition Blog.

[5] Jen-tse Huang, Jiaxu Zhou, Tailin Jin, Xuhui Zhou, Zixi Chen, Wenxuan
Wang, Youliang Yuan, Michael R. Lyu, and Maarten Sap. 2024. On the Re-
silience of LLM-Based Multi-Agent Collaboration with Faulty Agents. (2024).
arXiv:2408.00989 [cs.Al]

[6] Ariel Kamen and Yakov Kamen. 2025. Majority Rules: LLM Ensemble is a Winning
Approach for Content Categorization. (2025). arXiv:2511.15714 [cs.AI]

[7] Kai Mei, Xi Zhu, Wujiang Xu, Wenyue Hua, Mingyu Jin, Zelong Li, Shuyuan
Xu, Ruosong Ye, Yinggiang Ge, and Yongfeng Zhang. 2024. AIOS: LLM Agent
Operating System. (2024). arXiv:2403.16971 [cs.0S]

[8] Mahmoud Mohammadi, Yipeng Li, Jane Lo, and Wendy Yip. 2025. Evaluation
and Benchmarking of LLM Agents: A Survey. (2025). arXiv:2507.21504 [cs.LG]

[9] Ninad Naik. 2024. Probabilistic Consensus through Ensemble Validation: A
Framework for LLM Reliability. (2024). arXiv:2411.06535 [cs.AlI]

[10] Shaina Raza, Ranjan Sapkota, Manoj Karkee, and Christos Emmanouilidis. 2025.
TRiSM for Agentic Al: A Review of Trust, Risk, and Security Management in
LLM-based Agentic Multi-Agent Systems. (2025). arXiv:2506.04133 [cs.AI]
doi:10.48550/arXiv.2506.04133

[11] James Reason. 2000. Human error: models and management. BMJ 320, 7237

(2000), 768-770.

Huascar Sanchez, Briland Hitaj, Jules Bergmann, and Linda Briesemeister.

2025. Multi-LLM Collaboration for Medication Recommendation. (2025).

arXiv:2512.05066 [cs.LG]

[12

Preprint Draft, 2026,

[13] Claude E. Shannon. 1948. A mathematical theory of communication. The Bell
System Technical Journal 27, 3 (1948), 379-423.

Zhenhailong Wang, Shaoguang Mao, Wenshan Wu, Tao Ge, Furu Wei, and Heng
Ji. 2024. Unleashing the emergent cognitive synergy in large language models: A
task-solving agent through multi-persona self-collaboration. In Proceedings of the
2024 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (Volume 1: Long Papers). 257-279.
Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan,
and Yuan Cao. 2023. ReAct: Synergizing Reasoning and Acting in Language
Models. In International Conference on Learning Representations.

Zhexin Zhang, Shiyao Cui, Yida Lu, Jingzhuo Zhou, Junxiao Yang, Hongning
Wang, and Minlie Huang. 2024. Agent-SafetyBench: Evaluating the Safety of
LLM Agents. (2024). arXiv:2412.14470 [cs.CL]

[14

[15

=
&


https://www.anthropic.com/research/building-effective-agents
https://www.anthropic.com/research/building-effective-agents
https://arxiv.org/abs/2503.13657
https://arxiv.org/abs/2502.18036
https://arxiv.org/abs/2408.00989
https://arxiv.org/abs/2511.15714
https://arxiv.org/abs/2403.16971
https://arxiv.org/abs/2507.21504
https://arxiv.org/abs/2411.06535
https://arxiv.org/abs/2506.04133
https://doi.org/10.48550/arXiv.2506.04133
https://arxiv.org/abs/2512.05066
https://arxiv.org/abs/2412.14470

	Abstract
	1 Introduction
	1.1 From Single AI Person to AI Office
	1.2 Achieving Coherence
	1.3 Theoretical Foundation
	1.4 Architecture Overview
	1.5 Contributions

	2 Related Work
	2.1 Multi-Agent LLM Systems
	2.2 LLM Ensemble and Consensus Methods
	2.3 Multi-Model Collaboration in High-Stakes Domains
	2.4 Evaluation and Benchmarking of Agent Safety
	2.5 Positioning and Contributions

	3 System Architecture
	3.1 Multi-Agent Architectures: From Delegation to Organizational Oversight
	3.2 Architecture of the AI Office
	3.3 Team-Based Execution with Pre-Declared Acceptance Testing
	3.4 Remote Code Execution: Separating Brains from Hands
	3.5 Comparison: Traditional Single-Agent vs. AI Office

	4 Use Cases and Evaluation
	4.1 Financial Domain Case Study
	4.2 Evaluation Metrics and Analysis
	4.3 Comparative Analysis

	5 Discussion
	5.1 Key Insights
	5.2 Limitations
	5.3 Implications for Production AI
	5.4 Future Work

	6 Conclusion
	References

